
The Journal of High School Research 

Hardware Acceleration of rANS Decoder
Sina Lindseth*

Submitted: 19 January 2025 Accepted: 27 March 2025 Publication date: 24 April 2025

DOI: 10.70671/y0gyk181

Abstract: The rANS (range Asymmetric Numeral System) algorithm is a popular lossless data compression technique
based on probability distributions of a symbol alphabet. This class of encoders, called entropy encoders, assigns the
shortest codes to the highest-probability symbols. The variety of entropy coding methods is reflected in methods such
as how to compute the probabilities, construct the codes, whether to include other metadata information, and what
restrictions to impose on the arithmetic or input elements. ANS is a family of entropy coders that improve upon Huffman
and Arithmetic coding and are optimized for different use cases. The rANS algorithm is one of these coders and has the
advantage of limiting the size of its state variable regardless of the size of the input data. In other variants, certain variables
involved in the coding grow large for large input data, but they do not include extra steps to rescale those values, so there
is a tradeoff. This research presents a hardware implementation of static size that realizes rANS decoding in a streaming
use case. The rANS algorithm is suitable for this research because all parameters and variables involved are of known and
limited size for all possible input data. The simple decoding method of the rANS algorithm allows for efficient hardware
acceleration, specifically because all inputs to the algorithm are known on every clock cycle. Building a dedicated logic
circuit to implement the rANS decoding equations directly allows one to update the rANS state on every clock cycle,
allowing performance of one symbol decode per clock cycle. In a software solution, the rANS equations are calculated
over many steps. Memory move operations to store intermediate values take even more cycles. This research introduces a
simple digital logic design using a finite state machine that will decode one symbol per clock with no other latencies and
no circuit elements duplicated for parallel operations. It implements one decoder without pipelining or other methods to
hide parallel operations. It assumes no specific hardware or CPU architecture and measures performance in clock cycles
per decoding operation.

Author keywords: Data compression; clock cycle; combination logic; decoder; state machine; numeral system

Introduction

This research implements hardware acceleration of the rANS
(range Asymmetric Numeral System) decoding process. It
does not consider the encoding process. The work of Giesen1

provides several software examples of the ANS algorithm
based on the original work of Duda.2 These examples
from Giesen1 provide a code base that allows researchers
to explore novel implementations, compare performance
metrics, and attempt new optimizations. The author makes
use of input data from a Giesen1 software encoder that
implements rANS encoding correctly, allowing the author
to test the research decoder implementation against properly
encoded data. The author also uses code from a Giesen1

rANS decoder as a guide for implementing corresponding
decoding operations in hardware. The final output result of
this research is a simulation test bench of the logic circuit tak-
ing rANS encoded text as input. The simulator will display
the system clock, and each rising edge will mark a decoded
symbol appearing at the output in ASCII (see Fig. 1).

*Corresponding Author: Sina Lindseth. Email:
sinaswater@gmail.com

Kings High School, Seattle, WA 98133, USA

The decoded byte is output at the rising edge of each clock
cycle. The radix is switched to ASCII for readability of the
“DecodedByte” variable. All other variables are in hexadec-
imal. EncBytes is the input data in compressed form, and
“init” marks the start of the decoding operations. Note how
the EncBytes can stay the same for multiple DecodedByte
symbols. In Fig. 1, a860bb decodes the “E” and “S.” This
makes sense because it is performing data decompression,
so there should be fewer input bytes than output bytes,
proportional to the compression ratio, since it is expanding
compressed data.

This research uses a Finite State Machine as the frame-
work for the hardware-accelerated decoder, as described in
Minns et al.3. A single register holds the current state S,
which is fed to combinational logic along with the inputs.
The logic output Sn+1 is fed to the input of the register,
and the circuit updates the S state on every clock cycle. The
current S state is also used to calculate Sn+1 (see Fig. 2). The
rANS algorithm fits perfectly into this finite state machine
framework. It simply applies more input variables to S,
and nothing prevents expanding the inputs as long as the
current S state and input variables are valid on every cycle.
There are no dependencies within the rANS algorithm that
take multiple clock cycles to resolve. Variables are handled

91325001-1 JHSR Open: J. High Sch. Res.

JHSR Open: J. High Sch. Res., 2025, 2(1): 91325001

http://dx.doi.org/10.70671/y0gyk181
mailto:sinaswater@gmail.com


Figure 1. Simulation results showing one-symbol-per-clock decoding of an input stream starting at yellow mark

such that only one table lookup is required per step on the
same table.2 If the algorithm required multiple table lookups,
multiple copies of the table would be required, each with
their own lookup index.

Figure 2. Decoder circuit block diagram

Methodology

The rANS decoder maintains a state variable “S” that
updates on every clock cycle. The decoded byte is a function
of S. The logic to calculate Sn+1 is a function of Sn and
other static parameters brought over as metadata from the
encoding process. Information from the encoding process
consists of the encoded data and parameters, which are
tables used by the algorithm, such as probability distribution
information. These tables are described in the original paper
by Duda et al.2.

This research creates a register large enough to hold S.
Because rANS has a normalization feature, the size of S in
bits is known and limited. As S accumulates and is about to
grow beyond a maximum number of bits M, renormalization
discards the excess bits. For this research, 32 bits are used,
which is a number greater than M (S > M).

In Fig. 2, register S holds the current rANS state and
symbol ID lookup index from the rANS algorithm. Fin and
Fout are combinational logic equations. Fin calculates the
next rANS state and symbol index, Sn+1. Fout calculates the
decoded output, which is Fout(S), the fully decoded symbol.
There is zero delay in computing Fin and Fout. No clock
cycles are added for these functions, and there is no pausing
of the clock.

Information from Encoding Process Used
during Decoding

The “Parameters” in Fig. 2 come from static lookup tables
and other data brought over from the encoder. This
information is unique to each encoded message. The code
outputs an index that selects a value from a given table
on each clock cycle. Since all input data is valid on each
clock cycle and there are no dependencies on any processing,
Fin(Enc Data, Parameters, S) is valid on every clock cycle,

and Fout is valid on every clock cycle. Duda et al.2 describe
this information in detail, but for this research, only the
validity of all inputs on every clock cycle is required.

Method to Create Logic Equations for Input
and Output Functions

From Duda et al.2 and numerous software examples, such
as ryg_rans, Giesen,1 this research constructs a bit-accurate
decoder using the C programming language, as shown in
Fig. 3. This program provides a set of arithmetic operations
in the correct order for accurate decoding. The reference
code is modified to flatten all subroutines and parallel
operations. Finally, the user interface, optional features, and
methods that are not part of the algorithm are removed. The
referenced example has the code reduced to about 10 lines,
so it has little resemblance to the original reference source
material. Optimizations that target specific CPU architec-
tures hide critical information and include items that will not
port to the hardware framework in Fig. 2. The function Fin

is formed such that all component variables and coefficients
are hardware accessible and valid on every clock cycle.

Figure 3. C code to decode one symbol given
encoded input and metadata tables

This research implements function Fin using logic equa-
tions as in Fig. 4 with Verilog assign statements. Any number
of assign statements can comprise the function. Note how
the assign statements closely follow the C code in Fig. 3.
There are additional index variables that are used in lookup
tables. The tables are not shown in the figure, but can be
viewed in the code. These are the underlying data structures
in the C code, passed in as function arguments. The assign
statements in Fig. 4 are combinational logic equations and
are evaluated continuously, such that a change in any input
propagates instantly through all the equations and updates
every variable.

In Verilog, each variable must be declared with its size in
bits. The two requirements are that a given variable is wide

91325001-2 JHSR Open: J. High Sch. Res.

JHSR Open: J. High Sch. Res., 2025, 2(1): 91325001



Figure 4. Verilog code to decode one symbol given
encoded input and metadata tables

enough to hold the output of its connected logic, and that all
connected ports are the same size. For example, k-bit outputs
are truncated if connected to inputs of j < k bits. The Verilog
concatenation operator adds padding when connecting small
variables to large ports.

This research predicts that possible FPGAs or ASICs will
include a hardware multiplier. For one part of the equation,
the model for a popular hardware multiplier is imported to
simplify fitting the design into custom chipsets or an FPGA.
This multiplier is not needed for simulation, but is closer to
a real-world implementation.

The register S shown in Fig. 2 is an n-bit D flip-flop type
register as described in Kalyan et al.4. On every rising edge
of the clock, it updates its Q output with the current Fin,
a subset of which is the current decoded byte index. From
Fig. 4, the variable NewRansState is connected to the input
of register S. It is the consolidation of all the other assign
statements and table lookups and is the correct equation
for Fin.

Concurrency in Verilog

This research takes advantage of the characteristic concur-
rency properties of the “assign” operator, as described in
Chen et al.5. All the statements in Fig. 3 are calculated
continuously, so any change in input produces an immediate
new result at the output. This concurrency allows the entire
decode of the next symbol to occur between the clock rising
edges, at the instant a new encoded byte is fed to the decoder.
By comparison, the statements in Fig. 2 are executed in order
as instructions by a CPU, each taking one or more clock
cycles.

Method to Test the Decoder

Parameter tables and encoded data are included as arrays of
constants in a Verilog test bench. These arrays are accessed
from the device under test, which is the decoding mod-
ule. The decoding module outputs indexes used to look up
values in the arrays. Note the variables in Fig. 4 that end
in “LookupIndex.” Any time you encode new data using
a given rANS encoder, you must replace these tables and
the encoded message in the test bench. For large messages,
the tables may grow in size. To form arrays in Verilog, the

research uses the Verilog concatenation operator and reads
data using the Verilog part-select operator. When using these
operators, a C program can generate these tables easily in
the Verilog syntax. An example is included with the GitHub
project for this research.

The test bench generates clock cycles and includes an
“init” signal to mark the start of the decoding. The simulator
is run at least long enough to generate a number of clock
cycles equal to the length of the plain text message after init
is asserted.

Method for Table Lookup

In a real chipset, tables would be stored in RAM and
there would be logic to load and unload this memory. This
research focuses on hardware acceleration and minimizes
unrelated features to the extent possible. This implementa-
tion concatenates a given array into one large hexadecimal
constant. The size of this constant is then N bytes × 8
bits/byte. The Verilog part-select operator is then used, as
described in Sutherland et al.,6 to retrieve m × 8 bits given
an index. See Fig. 5 for an example.

Figure 5. Example of extracting element from array
using Verilog part select

This method makes the table lookup result continuously
available to the rest of the logic as long as the index is valid.
When the index changes, the new result is instantly available.

Discussions and Guidelines for Applications

Applications using this decoder can leverage the fact that the
number of cycles spent decoding a given text is deterministic.
This determinism, combined with the one-symbol-per-cycle
performance, implies that the circuit could be used in line
with a network stream without the need for complex buffer-
ing, flow control mechanisms, and checks for completion of
decoding.

Results

The design spends N clock cycles decoding, where N equals
the length in symbols of the unencoded, or “plain text,”
message. The input data has a smaller size since it underwent

91325001-3 JHSR Open: J. High Sch. Res.

JHSR Open: J. High Sch. Res., 2025, 2(1): 91325001



Figure 6. Simulation showing the start and end of decoding

compression in the encoding process. This level of perfor-
mance was the goal of this research. See the waveforms in
Fig. 6.

Discussions and Guidelines for Applications

The logic framework in this research generalizes to any input
function Fin. A free-running counter would be a simple
example. This research makes Fin include the entire rANS
decoding algorithm. Fin can be infinitely complex as long as
all inputs to Fin are valid on every clock cycle including any
feedback loops within the logic.

In a real-world implementation, trade-offs would be made
for parameter table storage, storage of encoded message,
and multiplier delay. Memories storing tables and encoded
data must be readable in one clock cycle. The delay of
the multiplier and internal RAM memories will limit clock
frequencies. Depending on cost, optimal trade-offs in delays
and memory capacities are possible. Limiting the size of
the encoded message is a good starting point to reduce
required memory capacity. Using the multiplier mitigates the
size of table lookups by handling a fixed operation required
on every decode. However, the multiplier itself adds some
delay, so a designer would evaluate whether to absorb the
multiplication into a larger table lookup or keep it separate.

This research only shows the algorithm construction and
does not implement the solution in real hardware. It does
not estimate the clock frequencies that could be achieved
in any specific ASIC or FPGA technology. As technology
evolves, such timings will improve, and the tightly coupled
RAM needed to present parameters and encoded data to the
finite state machine will increase in capacity. Other research
measures data rates and performance metrics based on logic
delays in one particular chipset, but these are only valid at the
time the paper is written.1 After some years, those timings
no longer make sense. This research describes a simple logic
framework that can fit into an arbitrary chipset, and the
performance metric is simply symbols per clock cycle, not
dependent on propagation delays through the technology.

Recommendations for Future Work

The research aligns with optimizations in other research that
allows for parallelism by passing intermediate states as meta-
data, allowing additional decoders to skip to different start
points within the message, as described in Lin et al.7. There
is nothing to prevent using multiple instances of this decoder
in parallel in those implementations. Such solutions would
see additional improvements beyond their fast-forwarding
mechanisms by using the hardware-accelerated decoder to
decode at one symbol per clock cycle from the start point
obtained from their calculations. Additional research could
focus on novel logic designs that provide a memory pool so
that encoded data could be streamed into this memory and
then distributed to multiple hardware-accelerated decoders
without any errors or loss of efficiency.

Conclusions

The rANS decode operation shown in this article fulfills the
stated goal of one symbol per clock cycle for efficient hard-
ware acceleration. The heart of the algorithm is to maintain
a state variable in a register, much like a counter. Since all
parameters and input data are known on every clock cycle,
a correctly decoded symbol is output on every clock cycle.
This method achieves the advantages of both efficiency and
determinism in a straightforward manner.

Acknowledegments

The author would like to express gratitude to Fabian “ryg”
Giesen for developing a set of software rANS encoders
and decoders, which the author used to generate encoded
test data and which also served as an inspiration for this
hardware-accelerated version.
Supplementary Information
The code for this project has been posted to GitHub. It
includes a working example with automated scripts for sim-
ulation with ModelSim and encoded data for testing. The

91325001-4 JHSR Open: J. High Sch. Res.

JHSR Open: J. High Sch. Res., 2025, 2(1): 91325001



project is located at https://github.com/Sinaresearch/rans_
decoder/.
Journal’s Disclaimer
The views and opinions expressed in this article are those
of the author(s) and do not necessarily reflect the official
policy or position of the Journal of High School Research
(JHSR) or any affiliated entities. While every effort has been
made to ensure the accuracy and reliability of the infor-
mation presented in this article, the Journal of High School
Research and its publishers are not responsible for any errors,
omissions, or inaccuracies contained within the article. The
journal does not assume any liability for the content or for
the consequences of any actions taken based on the infor-
mation provided herein. The author(s) of this article affirm
that all necessary ethical approvals and permissions were
obtained prior to conducting the research and submitting the
manuscript. The responsibility for the interpretation and use
of the information presented rests solely with the author(s).

References

[1] Giesen F. “ryg.”Rygorous/Ryg_rans; 2014. December 16, 2024.
https://github.com/rygorous/ryg_rans.

[2] Duda J. Asymmetric numeral systems: entropy coding com-
bining speed of Huffman coding with compression rate
of arithmetic coding. arXiv preprint arXiv:1311.2540. 2013.
doi:10.48550/ARXIV.1311.2540.

[3] Minns P, Elliott I. FSM-Based Digital Design Using Verilog
HDL. 1st ed. A-2 Windsor Estate, Chuna Bhatti, Bhopal
462016 India: Wiley, Genesis Global Publication; 2008:67–103.
doi:10.1002/9780470987629.

[4] Kalyan YV, Vineeth Kumar M, Sreenath P. Design of D flip-
flops for high performance VLSI applications using CMOS
technology. Int J Res Publ Rev. June 2022;3(6):3029–3038.

[5] Chen Q, Zhang N, Wang J, et al. The essence of ver-
ilog: a tractable and tested operational semantics for verilog.
Proc ACM Program Lang. October 2023;7:OOPSLA2,30.
doi:10.1145/3622805.

[6] Sutherland S. Verilog HDL Quick Reference Guide. Sutherland
HDL; 2001. https://www.sutherland-hdl.com.

[7] Lin F, Arunruangsirilert K, Sun H, Katto J. Parallel rANS
decoding with decoder-adaptive scalability. Proceedings of the
52nd International Conference on Parallel Processing; August 7–
10, 2023; Salt Lake City UT USA: Association for Computing
Machinery. pp. 31–40. doi:10.1145/3605573.3605588.

About the Authors

Sina Lindseth is a Junior at King’s High-
school in Seattle, Washington. She enjoys
figure skating and leads the Community
Outreach Club at her school. Her research
interests include technology and healthcare
topics.

91325001-5 JHSR Open: J. High Sch. Res.

JHSR Open: J. High Sch. Res., 2025, 2(1): 91325001

https://github.com/Sinaresearch/rans_decoder/
https://github.com/Sinaresearch/rans_decoder/
https://github.com/rygorous/ryg_rans
https://doi.org/10.48550/ARXIV.1311.2540
https://doi.org/10.1002/9780470987629
https://doi.org/10.1145/3622805
https://www.sutherland-hdl.com
https://doi.org/10.1145/3605573.3605588

	Hardware Acceleration of rANS Decoder
	Introduction
	Methodology
	Information from Encoding Process Used during Decoding
	Method to Create Logic Equations for Input and Output Functions
	Concurrency in Verilog
	Method to Test the Decoder
	Method for Table Lookup
	Discussions and Guidelines for Applications
	Results
	Discussions and Guidelines for Applications
	Recommendations for Future Work
	Conclusions
	References


